Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Abstract Granitic batholiths of the ∼500 Ma Ross Orogen in Antarctica are voluminous in scale, reflecting prolific magmatism along the active early Paleozoic convergent margin of Gondwana. New age and isotopic analysis of zircons from a large suite of Ross granitoids spanning >2,000 km along the orogen provide a wealth of geochronologic, tracer, and inheritance information, enabling us to investigate the pace of magmatism, along‐strike temporal and geochemical trends, magmatic sources, and tectonic modes of convergence. Because granitoids penetrate the crust of the earlier Neoproterozoic rift margin, they also provide insight into the age and composition of the largely ice‐covered East Antarctic craton. Zircon U‐Pb ages from these and other samples indicate that active Ross magmatism spanned 475–590 Ma, much longer than generally regarded. Most samples have heavy zircon δ18O values between 6.5 and 11.5‰ and initial εHfcompositions between 0 and −15; their isotopic co‐variations are independent of age, as in other contemporary continental arcs, and reflect largely crustal melt sources. Samples near Shackleton Glacier have distinctly more mantle‐like isotope composition (i.e., radiogenic εHfand low δ18O) and separate two regions with distinctive isotopic properties and inheritance patterns—a more juvenile section of Mesoproterozoic crust underlying the southern TAM and an older, more evolved region of Paleoproterozoic and Archean crust in the central TAM. The isotopic discontinuity separating these regions indicates the presence of a cryptic crustal boundary of Grenvillian or younger age within the East Antarctic shield that may be traceable into the western Laurentian part of the Rodinia supercontinent.more » « less
-
Abstract Combined Hf-O isotopic analyses of zircons from tuffs and lavas within the Sierra Madre Occidental (SMO) silicic large igneous province are probes of petrogenetic processes in the lower and upper crust. Existing petrogenetic and tectonomagmatic models diverge, having either emphasized significant crustal reworking of hydrated continental lithosphere in an arc above the retreating Farallon slab or significant input of juvenile mantle melts through a slab window into an actively stretching continental lithosphere. New isotopic data are remarkably uniform within and between erupted units across the spatial and temporal extent of the SMO, consistent with homogeneous melt production and evolution. Isotopic values are consistent with enriched mantle magmas (80%) that assimilated Proterozoic paragneisses (~20%) from the lower crust. δ18Ozircon values are consistent with fractionation of mafic magma and not with assimilation of hydrothermally altered upper crust, suggesting that the silicic magmas evolved at depth. Isotopic data agree with previous interpretations where voluminous juvenile melts entered the lithosphere during the transition from a continental arc experiencing slab rollback (Late Eocene) to the arrival of a subducting slab window (Oligocene and Early Miocene) and failure of the upper plate leading to the opening of the Gulf of California (Late Miocene). An anomalously large heat flux and extension of the upper plate allow for the sustained fractionation of the voluminous SMO magmas and assimilation of the lower crust.more » « less
-
Abstract Iceland's oldest silicic rocks provide unique insight into the island's early crustal evolution. We present new zircon U‐Pb ages bolstered with zircon trace element and isotopic compositions, and whole rock Nd, Hf, and Pb isotope compositions, from three silicic magmatic centers—Hrafnsfjörður, Árnes, and Kaldalón—to understand the petrogenesis of large silicic volcanic centers in the northern Westfjords, Iceland. Our data confirm Hrafnsfjörður as the oldest known central volcano in Iceland (∼14 Ma) and establish an older age for Árnes (∼13 Ma) than previously estimated. We also report the first U‐Pb zircon dates from Kaldalón (∼13.5 Ma). Zircon oxygen isotope compositions range from δ18O∼+2 to +4‰ and indicate involvement of a low‐18O component in their source magmas. Hrafnsfjörður zircon Hf (mean sampleεHf∼ +15.3–16.0) and whole rock Hf and Nd (εHf = +14.5 to +15;εNd = +7.9 to +8.1) isotopic compositions are more radiogenic than those from Árnes (zircon sampleεHf∼ +11.8–13; whole rockεHf = +12.8 to +15.1;εNd = +7.3 to +7.7), but Hrafnsfjörður whole rock Pb isotope compositions (208/204Pb = 37.95–37.96;206/204Pb = 18.33–18.35) are less radiogenic than those from Árnes (208/204Pb = 38.34–38.48;206/204Pb = 18.64–18.78). Kaldalón has zircon Hf isotope compositions ofεHf∼+14.8 and 15.5 (sample means). These age and isotopic differences suggest that interaction of rift and plume, and thus the geodynamic evolution of the Westfjords, is complex. Isotopic compositions of Hrafnsfjörður and Árnes support involvement of an enriched mantle (EM)‐like mantle component associated with a pulsing plume that resulted in variable spreading rates and magma fluxes and highlight the heterogeneity of the Icelandic mantle.more » « less
An official website of the United States government
